

15. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. *Br J Radiol* 1989, **62**, 679-694.
16. Thames HD, Hendry JH. In: *Fractionation in Radiotherapy*. London, Taylor and Francis, 1987.
17. American Academy of Orthopaedic Surgeons. *Joint Motion: Method of Measuring and Recording*. Edinburgh, British Orthopaedic Association 1965.
18. Convery FR, Minteer MA, Amiel D, Connell KL. Polyarticular disability: functional assessment. *Arch Phys Med Rehabil* 1977, **58**, 494-499.
19. Scranton J, Fogel ML, Erdman WR. II: Evaluation of functional levels of patients during and following rehabilitation. *Arch Phys Med Rehabil* 1970, **51**, 1-21.
20. Bell RS, O'Sullivan B, Langer F *et al*. Complications and functional results after limb-salvage surgery and radiotherapy for difficult mesenchymal neoplasms: a prospective analysis. *Can J Surg* 1989, **32**, 69-73.
21. Chang AE, Steinberg SM, Culnane M, *et al*. Functional and psychological effects of multimodality limb-sparing therapy in patients with soft tissue sarcomas. *J Clin Oncol* 1989, **7**, 1217-1228.
22. Weddington WW, Segraves KB, Simon MA. Psychological outcome of extremity sarcoma survivors undergoing amputation or limb salvage. *J Clin Oncol* 1985, **3**, 1393-1399.
23. Shamberger RC, Sherins RJ, Rosenberg SA. The effects of postoperative adjuvant chemotherapy and radiotherapy on testicular function in men undergoing treatment for soft tissue sarcoma. *Cancer* 1981, **47**, 2368-2374.
24. Dresdale A, Bonow RO, Wesley R, *et al*. Prospective evaluation of doxorubicin-induced cardiomyopathy resulting from postsurgical adjuvant treatment of patients with soft tissue sarcomas. *Cancer* 1983, **52**, 51-60.
25. Stotter AT, Fallowfield M, Mott A, Fisher C, Westbury G. Role of compartmental resection for soft tissue sarcoma of the limb and limb girdle. *Br J Surg* 1990, **77**, 88-92.
26. Ball ABS, Fisher C, Pittam K, Watkins RM, Westbury G. Diagnosis of soft tissue tumours by Tru-cut biopsy. *Br J Surg* 1989, **77**, 756-758.

Acknowledgements—We thank Clarinda Williams for her help with the study.

Eur J Cancer, Vol. 27, No. 12, pp. 1574-1583, 1991.
Printed in Great Britain

0277-5379/91 \$3.00 + 0.00
© 1991 Pergamon Press plc

A Meta-analysis of Reported Correlations between Prognostic Factors in Breast Cancer: Does Axillary Lymph Node Metastasis Represent Biology or Chronology?

Indraneel Mittra and Kenneth D. MacRae

A statistical overview of published results on correlations between various prognostic factors in breast cancer was undertaken. A distinction was made between clinical (or anatomical) prognostic factors—namely, axillary lymph node status and tumour size—and eight different biological prognostic factors. The latter included: tumour grade, oestrogen and progesterone receptor status, thymidine labelling index, DNA ploidy, S-phase fraction, epidermal growth factor receptor expression and c-erbB-2 gene amplification (or overexpression). 139 articles were eligible for review which reported a total of 432 individual correlations. A simple form of meta-analysis was employed: the counting method, in which the number of studies achieving a statistically significant correlation or not were counted. For each possible correlation examined, the proportion of studies showing a statistically significant correlation was calculated and an exact binomial 99% confidence interval determined for that proportion. If the 99% confidence interval included 5% (the proportion of correlations that would be expected to be statistically significant if the null hypothesis was true), it was taken as failing to exclude the null hypothesis of a zero correlation, while if it excluded 5% it was taken as rejecting the null hypothesis of a zero correlation. A broad agreement was found among published reports on the existence of a statistically significant correlation between the various biological prognostic factors in breast cancer. Of the 20 correlations examined, 18 had a 99% confidence interval excluding 5%, thus rejecting the null hypothesis of a zero correlation. On the other hand, a completely different result was obtained when reports on possible correlations between lymph node status and tumour size on the one hand and the eight biological prognostic factors on the other were analysed. Of the 16 correlations examined, 13 had a 99% confidence interval including 5%, failing to reject the null hypothesis of a zero correlation. These observations suggest the hypothesis that the prognostic influence of node status and tumour size cannot be explained by an analysis of the biology of breast cancer; and is compatible with the contention that axillary node status is merely a reflection of the relative chronological age of breast cancer.

Eur J Cancer, Vol. 27, No. 12, pp. 1574-1583, 1991.

INTRODUCTION

AXILLARY NODE status has been the traditional prognostic factor used in the clinical management of breast cancer [1]. In recent years, several biological factors have been identified which have been shown to influence the clinical course of the disease, and

these are being increasingly used to make treatment decisions [2]. Nevertheless, lymph node status remains the gold standard against which the predictive power of biological prognostic factors are evaluated [2].

The existence of a strong direct relationship between the two major clinical prognostic factors, namely, the size of a tumour and (the risk of) axillary lymph node metastasis is well established [3]. A recent analysis of data on 24 740 cases of breast cancer recorded in the Surveillance, Epidemiology, and End Results Programme of the National Cancer Institute has demonstrated this relationship to be strictly linear [4]. On the other hand, results of published reports on correlations between various biological prognostic factors, and those between biological prognostic factors and lymph node status and tumour size, are conflicting. It is not clear to what extent the various prognostic factors are interrelated, and no systematic review of this vast and scattered literature is available. One purpose of this study was to undertake such a review, and to subject the results that have been reported in the literature to a statistical meta-analysis to establish reliably the extent to which the various prognostic factors in breast cancer might be correlated.

The second purpose of this statistical overview is the following. It is generally held that the relatively poor prognosis of patients with breast cancer that have spread to the axillary lymph nodes is due in part to a relatively greater biological aggressiveness and/or metastatic potential of the tumour, and in part to the relatively advanced chronological age at which the tumour is diagnosed [5]. On the other hand, some investigators have presented evidence which suggests that presence (and extent) of lymph node metastasis has little to do with tumour aggressiveness or metastatic potential, but is entirely a reflection of the relatively advanced chronological age of breast cancer [6-8]. One way to investigate which of the two views might be more appropriate could be to examine whether any interrelationships exist between clinical (or anatomical) prognostic factors—lymph node status and tumour size—and several of the well established biological prognostic factors in breast cancer. If a significant correlation between clinical and biological factors is found, the argument could be made that the poor prognosis of patients with lymph node metastasis is due, at least in part, to adverse biological properties of the tumour. If on the other hand, no significant correlation is found, this might be compatible with the suggestion that the presence of lymph node metastasis might entirely be a reflection of chronologically more advanced breast cancer.

METHODS

A literature search was made for articles published in English listed in the *Index Medicus*, and more recently in *Oncodisc* (Lippincott Information Services) that were concerned with any of the following eight prognostic factors in relation to breast cancer: tumour grade, oestrogen (ER), progesterone receptor (PR) status, thymidine labelling index (TLI), DNA ploidy (DNA index), S-phase fraction (SpF), epidermal growth factor receptor (EGFr) expression and *c-erbB-2* gene amplification (or overexpression). The articles obtained from this search were scrutinised and those that investigated a possible relationship between two or more of these biological prognostic factors, or between any of these biological factors and lymph node status and/or tumour size, were considered for inclusion in this analysis. Relevant articles published up to December 1989 were

included. A reported correlation was considered to be significant only if it achieved the conventional level of 5% ($P < 0.05$).

Criteria for exclusion were publication in a language other than English; articles dealing with prognostic factors but which did not investigate a correlation between them; articles that reported the same series of patients more than once (in such situations the publication that described the results in greater detail was selected for inclusion).

Since the vast majority of articles had defined lymph node status as being positive or negative while reporting a correlation with other prognostic factors, this classification was maintained in this review in order to ensure uniformity. Further subdivisions within the lymph node positive group reported by some workers were not considered. For example, Tandon *et al.* [9] found no correlation between lymph node metastasis and *c-erbB-2* overexpression when the former was classified as being positive or negative; but upon sub-dividing the lymph node positive patients into those with 1-3 nodes and 3+ nodes positive subgroups, a weak positive correlation between the extent of lymph node involvement and oncogene overexpression was found. In this situation *c-erbB-2* was considered not to have any association with node status. In a few older articles clinical stage (rather than lymph node status and tumour size) had been mentioned; in such cases stage of tumour was taken to indicate tumour size for the purpose of this review. In most reports axillary node status and tumour size represented those reported by the pathologist. In most articles histological grade of the tumour was reported, but in a few, nuclear grade had been taken into account; both these have been used interchangeably to indicate tumour grade.

This overview is essentially a meta-analysis, in that it is an exercise in combining the results of independent studies which have addressed similar questions. Because of diversity of the presentation of results in the various publications surveyed, one of the simplest forms of meta-analyses was employed, namely the counting method as has been described by Brozek and Tiede [10], Jones and Fiske [11], Wilkinson [12] and Rosenthal [13]. In this form of meta-analysis, the number of studies achieving statistical significance (at $P < 0.05$) and not achieving statistical significance were counted. If a number of studies have been carried out to look at a particular possible correlation for which the null hypothesis (of zero correlation) is true, it would be expected that by chance in the long run only 5% of the studies would manifest a statistically significant correlation. For each possible correlation examined, the proportion of studies showing a statistically significant correlation was calculated and an exact binomial 99% confidence interval was determined for that proportion (from tables published in *Documenta Geigy* [14]). If the 99% confidence interval included 5%, it was taken as failing to exclude the null hypothesis of a zero correlation, whilst if the entire interval was greater than 5% it was taken as rejecting the null hypothesis of a zero correlation.

RESULTS

The literature review is summarised in Tables 1 and 2. The numbers in small print in each cell refer to the various articles reviewed with respect to a correlation between a set of two prognostic factors. The numbers in the numerator are references to those articles that have confirmed the presence of a statistically significant correlation whilst those in the denominator refer to articles that have failed to confirm a significant correlation between two factors. By adding up the number of articles referred to in the numerator and denominator (total numbers

Correspondence to I. Mittra.

I. Mittra is at the Departments of Surgery and Laboratory Medicine, Tata Memorial Hospital, Bombay 400012, India; and K. D. MacRae is at the Department of Medical Statistics, Charing Cross and Westminster Medical School, London, U.K.

Revised 5 June 1991; accepted 11 July 1991.

Table 1. Review of correlations between biological prognostic factors

		Tumour grade			
ER	29 33 37 38 39 40 41 42 43 46 55 57 63 64 66 67 68 71 72 75	= 20		ER	
	25 26 27 30 48 50 73 74 99	= 9			
PR	40 41 55 57 66 67 68 75		32 41 53 54 60 61 63 66 76 78 131	PR	
	= 8		= 11		
TLI	63	= 1	= 0	TLI	
	81 82 87 89 93		81 83 85 88 90 92 93		
Ploidy (DNA-index)	= 5		= 7	Ploidy (DNA index)	
	= 0		= 0		
S-phase fraction	91 98 99 100 102 105 107 108 110 112 115 116 117 119 120 121	= 16	94 96 98 99 100 103 107 108 109 110 111 113 114 115 116 117 118 120 121 122 123	= 21	= 10
	95	= 1	90 91 95 101 105 106 112	= 7	
EGF receptor	129 132	= 2	118 120 123	= 10	= 1
	133	= 1	115	= 1	
C-erbB-2 oncogene	141 143 147 148 149 150 151 152	= 8	125 127 128 129 130 131 132	= 7	= 0
	136 138 140 145	= 4	124 126	= 2	
			130 131 132		
			9 135 143 147 148 150 152	= 4	
			134 136 138 140 141 142	= 6	
			141	= 1	
					151
					= 1

The numbers in small print in each cell are references to the various articles reviewed; those in the numerator are references to articles that have reported the presence of a statistically significant correlation between two prognostic factors while those in the denominator are references to articles that have reported the absence of a statistically significant correlation. Numbers in bold print denote the total numbers of references in these two categories. ER = oestrogen receptor; PR = progesterone receptor; TLI = tumour labelling index.

Table 2. Review of correlations between clinical and biological prognostic factors

	Nodal status	Tumour size
Tumour grade	15 16 20 22 23 24 72 = 7 17 19	15 21 23 24 72 = 5 18 20
ER	32 73 131 = 3 26 27 28 29 30 31 34 35 36 37 39 41 43 44 45 47 50 51 52 54 55 56 57 58 59 61 62 63 65 67 68 72 74 75 77 78 90	36 59 74 131 = 4 25 26 27 28 31 32 34 37 41 43 45 47 49 50 51 55 56 61 62 63 65 66 67 68 69 70 72 73 75 77 78
PR		59 65 = 2 41 55 56 61 66 67 68 69 70 75 78
	32 41 54 55 56 57 59 61 63 65 66 67 68 75 78 90	
TLI	80 = 1 79 81 82 85 86 87 89	84 90 92 = 3 80 81 82 86 87 89 93
DNA-index (ploidy)	106 107 114 115 116 118 121 123 = 8 91 95 96 100 101 108 109 110 117 119 120 122	104 112 114 119 = 4 90 91 95 100 101 105 107 110 113 115 116 117 120 121 122 123
S-phase fraction	118 = 1 91 95 96 108 110 115 120 123	90 123 = 2 91 95 97 110 115 120
EGF receptor	131 = 1 129 133	129 = 1 133
C-erbB-2 oncogene	135 = 1 9 136 137 138 139 140 141 142 143 144 145 146 147 148 150 152	145 = 1 9 135 136 138 146 147 150 151 152

depicted in bold print), a numerical assessment of the extent of agreement or disagreement on the presence of a correlation between two factors is obtained.

Meta-analyses of data in Table 1 and in Table 2 are given in Table 3 and Table 4, respectively. In each cell of Tables 3 and 4 the proportion of studies which have reported a statistically significant correlation (A) and the lower limit of the 99% confidence interval for the proportion with a statistically significant correlation (B) is given.

An examination of Table 1 reveals that the number of reports that supported the presence of a correlation between the various biological prognostic factors was consistently greater than the number that did not. For example, 20 articles found a correlation between ER and tumour grade whilst nine did not; seven articles observed a correlation between TLI and ER and no article contradicted this; 10 articles reported a correlation between S-phase fraction and DNA index while only one failed to do so, and so on. The meta-analysis of this data (given in Table 3) shows that of the 20 correlations for which the lower 99%

confidence limit could be determined, 18 had a lower 99% confidence limit greater than 5%, thus rejecting the null hypothesis (of zero correlation). The only situations where the null hypothesis could not be excluded were the relationships between tumour grade and EGF receptor (this might well be due to the small number of studies available for analysis), and that between PR and TLI (where none of the three studies reported a statistically significant correlation). The latter finding of a lack of correlation between PR and TLI was unexpected, since a strong correlation was demonstrable between ER and TLI. In summary, a broad correlation appeared to exist between the various biological prognostic factors examined. The presence of such an interrelationship may indicate that these factors reflect, directly or indirectly, some common properties—such as growth rate and/or metastatic potential—of breast cancer.

A review and a meta-analysis of correlations between the two clinical and the eight biological prognostic factors is given in Tables 2 and 4, respectively. The review in Table 2 is conspicuous by a general lack of agreement among published reports

Table 3. Meta-analysis of correlations between biological prognostic factors in breast cancer

		Tumour grade										
		A	B	ER		PR		TLI		Ploidy		
ER	69.0% 43.5%		A	B	100.0% 61.8%		A	B	100.0% —		A	B
	88.9% 41.5%		100.0%	61.8%								
PR	100.0% 34.7%		100.0%	46.9%	0.0% 0.0%*		A		A		Ploidy	
TLI	94.1% 63.7%		75.0%	49.2%	90.0% 45.6%		71.5% 20.3%		100.0% 7.1%		A	
DNA-index ploidy	87.5% 36.9%		90.9%	49.1%	100.0% 17.1%		0		90.9% 49.1%			
S-phase fraction	66.7% 4.1%*		77.8%	30.7%								
EGF receptor	66.7% 27.3%		53.9%	18.9%	80.0% 18.5%		0		0			
C-erbB-2 oncogene												

A = proportion of studies reporting a statistically significant correlation. B = lower limit of the 99% confidence interval for the proportion of studies with a statistically significant correlation.

* Lower 99% confidence limit is less than 5%.

Table 4. Meta-analysis of correlations between clinical and biological prognostic factors in breast cancer

	Nodal status		Tumour size	
	A	B	A	B
Tumour grade	77.8%	30.7%*	71.4%	20.3%*
ER	7.5%	0.9%	11.4%	2.0%
PR	0%	0%	15.4%	0.8%
TLI	12.5%	0.1%	30.0%	3.7%
DNA-index (ploidy)	40.0%	14.6%*	20.0%	3.6%
S-phase fraction	11.1%	0.1%	25.0%	1.4%
EGF receptor	33.3%	0.2%	50.0%	0.3%
C-erbB-2 oncogene	5.9%	0.03%	10.0%	0.1%

* Lower 99% confidence limit is greater than 5%.

with respect to an association between lymph node status and tumour size on the one hand and the biological prognostic factors on the other. In virtually every case (except those relating to tumour grade; see later for possible explanation), the number of articles referred to in the denominator is greater than that in the numerator, suggesting a general lack of association between clinical and biological prognostic factors. The meta-analysis shown in Table 4 demonstrates that out of the 16 correlations examined, in only three of them was the lower 99% confidence limit greater than 5% in which the null hypothesis of a zero correlation could be rejected. In one of these, the relationship

between nodal status and DNA index, the correlation was nevertheless in the anticipated direction (Table 2).

The striking exceptions to the general lack of correlation between clinical and biological prognostic factors observed in Tables 2 and 4 are the suggestion of an association between lymph node status and tumour grade and tumour size and tumour grade where the null hypothesis could be rejected. This finding was surprising because tumour grade is well correlated with the other biological prognostic factors examined (Tables 1 and 3), which in their own turn do not correlate with the clinical factors (Tables 2 and 4). It should also be noted that of all the biological parameters included in this overview, tumour grade is the only one that is determined subjectively. It is possible that prior knowledge of the presence of lymph node involvement might bias the pathologist while (subjectively) grading a tumour.

DISCUSSION

A review such as this suffers from many potential deficiencies. These include: (1) publication bias, i.e. bias on part of journals to favour publication of positive results; (2) the possible subconscious bias of authors in analysing and interpreting their data in order to obtain a positive correlation; (3) lack of statistical power in some studies due to relatively small sample size; (4) variability in criteria (or cut-off levels) used to classify patients, ER positive vs. ER negative, diploid vs. aneuploid, high vs. low SpF etc.; (5) variability in assay techniques; (6) variability in types of patients included in different studies; (7) intercorrelations among some of the variables considered in the studies reviewed (such as that between ER and PR), so that all the analyses will not be tests of independent hypotheses; (8) differing study designs, and many others. Perhaps one way to minimise such difficulties would have been to include only large studies or weighting them more heavily than smaller ones. But a large study may have been poorly conducted in terms of assay techniques, and defining what is large and what is small is a subjective decision which could introduce a further bias. No

selection criteria was likely to have been perfect and none would have been better than any other. For all these reasons a meta-analysis, from which no relevant published report has been excluded, is the only process that allows one to draw meaningful conclusions from a review such as this.

Of course, the ideal way to address some of the difficulties listed above (especially points 2, 4 and 7) would have been to have had access to the raw data of every study, both for those which have been published and for those which have not been published. To obtain the raw data from so many studies would probably not be possible, and availability of the raw data from only some of the studies would produce a biased meta-analysis. However, although what we have attempted to do from published sources does have major obvious limitations, it is, at least, a statistically sound method for performing a rigorous and systematic overview of this subject.

The statistical overview conducted here suggests two broad conclusions namely that there exists a general interrelationship between the various biological prognostic factors themselves, whilst there exists a relative lack of correlation between the clinical or anatomical prognostic factors on the one hand and the biological prognostic factors on the other. In the case of the former, 18/20 correlations had the lower 99% confidence limit that was greater than 5% (thus excluding the null hypothesis of a zero correlation) whilst in case the latter 13/16 correlations had the lower 99% confidence limit that was less than 5% (thus supporting the null hypothesis of a zero correlation). It should, however, be pointed out that, since the likely direction of the bias of authors as well as of publishers would be to tend to overstate the possibility of the existence of a correlation, it is possible that Table 1 has a bias in favour of reporting a positive correlation. By the same token, however, such a bias makes the relative lack of correlation between clinical and biological prognostic factors (in Table 2) even more convincing.

The size of a breast tumour may be considered a product of its biological aggressiveness and its chronological age, divided by the degree of host resistance to growth. The presence (and extent) of axillary node involvement may be considered the product of biological potential for metastasis (which may differ from biological aggressiveness) and chronological time, divided by host resistance to metastasis. Since host resistance is neither currently well understood nor quantifiable, for practical purposes prognosis of breast cancer might be considered as being determined by the product of biological aggressiveness and/or metastatic potential on the one hand and chronological age of breast cancer on the other.

It is well recognized that axillary lymph node status is the most important independent determinant of disease-free and overall survival in breast cancer [1,4,153,154]. One aspect of the prognostic influence of lymph node status and tumour size appears, however, not to have been fully recognized. This is the observation made by some investigators that once the disease recurs after ostensibly curative local therapy, lymph node status (or tumour size or stage) ceases to have any prognostic influence; and that postrelapse survival of node-positive and node-negative patients become identical [6,7,8,156-158]. On the other hand, at least two of the biological prognostic factors, namely ER status and TLI, have been shown to continue to be predictive even after relapse; with ER-positive patients and those with low TLI surviving longer after relapse than those who are ER-negative or have high TLI [6,155,157-164]. This finding has been interpreted as suggesting that lymph node status is not an indicator of intrinsic aggressiveness of breast cancer or of its

metastatic potential, but rather is an indicator of chronological age from the time of inception. Oestrogen receptor status and TLI, on the other hand, are true indicators of the biological behaviour of breast cancer and exert their influence throughout the course of the disease [6,7,8,165,166].

The review conducted here indicates that there is, in general, a lack of correlation between lymph node status and tumour size and the various biological prognostic factors in breast cancer. This implies that node-positive (or large size) tumours are biologically no different from those that are node-negative (or small in size); and that the former have the same chance as the latter of being ER-positive or negative, being diploid or aneuploid, having high or low TLI, having single or multiple copies of the oncogene *c-erbB-2*, and so on. This suggests that the apparent influence of axillary node status and tumour size on prognosis cannot be explained by an analysis of the biology of breast cancer, and that clinical and biological prognostic factors might influence prognosis through different mechanisms. This would be compatible with the contention that axillary node status and tumour size are of prognostic significance only in as much as they reflect the relative chronological age of breast cancer [6-8].

However, an alternative interpretation of this overview might be that lymph node status and tumour size mediate their prognostic influence through a biological property of breast cancer that is yet to be identified.

1. Valagussa P, Bonadonna G, Veronesi O. Patterns of relapse and survival following radical mastectomy: Analysis of 716 consecutive patients. *Cancer* 1978, **41**, 1170-1178.
2. McGuire WL. Prognostic factors for recurrence and survival in human breast cancer. *Breast Cancer Res Treat*, 1987, **10**, 5-9.
3. Fisher B, Slack NH, Bross IDJ, et al. Cancer of the breast: size of neoplasm and prognosis. *Cancer* 1969, **24**, 1071-1080.
4. Carter CL, Allen C and Henson DE. Relation of tumor size, lymph node status and survival in 24,740 breast cancer cases. *Cancer* 1989, **63**, 181-187.
5. Fisher B. Cancer surgery; a commentary. *Cancer Treatment Reports*, 1984, **68**, 31-41.
6. Paterson AHG, Zuck VP, Szafran O, et al. Influence and significance of certain prognostic factors on survival in breast cancer. *Eur J Cancer Clin Oncol* 1982, **18**, 937-943.
7. Tubiana M. LH Gray Medal Lecture: Cell Kinetics and Radiation Oncology. *Int J Radiat Oncol Biol Phys* 1982, **8**, 1471-1489.
8. Tubiana M, Chauvel P, Renaud A and Malaise EP. Vitesse de croissance et histoire naturelle du cancer du sein. *Bull Cancer* (Paris) 1975, **64**, 341-358.
9. Tondon AK, Clark GM, Chamness GC, et al. HER-2/neu oncogene protein and prognosis in breast cancer. *J Clin Oncol* 1989, **7**, 1120-1128.
10. Brozek J, Tiede K. Reliable and questionable significance in a series of statistical tests. *Psychol Bull* 1952, **49**, 339-341.
11. Jones LV, Fiske DW. Models for testing the significance of combined results. *Psychol Bull* 1953, **50**, 375-382.
12. Wilkinson BA. Statistical consideration in psychological research. *Psychol Bull* 1951, **48**, 156-158.
13. Rosenthal R. Combining results of independent studies. *Psychol Bull* 1978, **85**, 185-193.
14. Documenta Geigy. *Scientific Tables*, Sixth Edition. Geigy, (UK) Limited, Macclesfield 1962.
15. Bloom HJG. Prognosis in carcinoma of the breast. *Br J Cancer* 1950, **4**, 259-288.
16. Cutler SJ, Black MM, Goldenberg IS, et al. Prognostic factors in the cancer of the female breast. I: An investigation of some interrelations. *Cancer* 1969, **16**, 1589-1597.
17. Kister SJ, Sommers SC, Haagensen CD, et al. Nuclear grade and sinus histiocytosis in cancer of the breast. *Cancer* 1969, **23**, 570-575.
18. Tough ICK, Carter DC, Fraser J, Bruce J. Histological grading in breast cancer. *Br J Cancer* 1969, **23**, 294-301.

19. Champion HR, Wallace IWJ, Prescott RJ. Histology in breast cancer prognosis. *Br J Cancer* 1972, **26**, 129-138.
20. Fisher ER, Gregorio RM and Fisher B. The pathology of invasive breast cancer: A syllabus derived from findings of the National Surgical Adjuvant Breast Project (Protocol No. 4). *Cancer* 1975, **36**, 1-85.
21. Thoresen S. Histological grading and clinical stage at presentation in breast carcinoma. *Br J Cancer* 1982, **46**, 457-458.
22. Fisher ER, Sass R, Fisher B and Collaborating NSABP Investigators. Pathologic findings from the National Surgical Adjuvant Project for Breast Cancer (Protocol No. 4) X. Discriminants for Tenth Year Treatment Failure. *Cancer* 1984, **53**, 712-723.
23. Davis BW, Gelber RD, Goldhirsch A, et al. Prognostic significance of tumor grade in clinical trials of adjuvant therapy for breast cancer with axillary lymph node metastasis. *Cancer* 1986, **58**, 2662-2670.
24. Chevallier B, Heintzmann F, Mosseri V, et al. Prognostic value of estrogen and progesterone receptors in operable breast cancer. Results of a univariate and multivariate analysis. *Cancer* 1988, **62**, 2517-2524.
25. Terenius L, Johnsson H, Rimsten A, Thoren L. Malignant and benign human mammary disease, estrogen binding in relation to clinical data. *Cancer* 1974, **33**, 1364-1368.
26. Maass H, Engel B, Trams G. Steroid hormone receptors in human breast cancer and the clinical significance. *J Steroid Biochem* 1975, **6**, 643-647.
27. Rosen PP, Menendez-Botet CJ, Nisselbaum JS, et al. Pathological review of breast lesions analysed for estrogen receptor protein. *Cancer Res* 1975, **35**, 3187-3194.
28. Knight WA, Livingstone RB, Gregory EJ, McGuire WL. Estrogen receptor as independent prognostic factor for early recurrence in breast cancer. *Cancer Res* 1977, **37**, 4669-4671.
29. Maynard PV, Davies CJ, Blamey RW, et al. Relationship between oestrogen receptor content and histological grade in human primary breast tumours. *Br J Cancer* 1978, **38**, 745-748.
30. Rich MA, Frumanski P, Brooks SC, et al. Prognostic value of estrogen receptor determinations in patients with breast cancer. *Cancer Res* 1978, **38**, 4296-4298.
31. Allegra JC, Lippman ME, Simon R, et al. Association between steroid receptor status and disease-free interval in breast cancer. *Cancer Tr Rep* 1979, **63**, 1271-1277.
32. Allegra JC, Lippman ME, Thompson BE, et al. Distribution frequency and quantitative analysis of estrogen, progesterone, androgen, and glucocorticoid receptors in human breast cancer. *Cancer Res* 1979, **39**, 1447-1454.
33. Antoniades K, Spector H. Correlation of estrogen receptor levels with histology and cytomorphology in human mammary cancer. *Am J Clin Path* 1979, **71**, 497-503.
34. Bishop HM, Blamey RW, Elston CW, et al. Relationship of oestrogen receptor status to survival in breast cancer. *Lancet* 1979, **ii**, 283-284.
35. Hahnel R, Woodings T, Vivian AB. Prognostic value of estrogen receptors in primary breast cancer. *Cancer* 1979, **44**, 671-675.
36. Kern WI. Morphologic and clinical aspects of estrogen receptors in carcinoma of the breast. *Surg Gynecol Obst* 1979, **148**, 240-242.
37. Elwood JM, Godolphin W. Oestrogen receptors in breast tumours: Association with age, menopausal status and epidemiological and clinical features. *Br J Cancer* 1980, **42**, 635-644.
38. Fisher ER, Redmont CK, Hannen L, et al. Correlation of estrogen receptor and pathologic characteristics of invasive breast cancer. *Cancer* 1980, **45**, 349-353.
39. Frumanski P, Saunders DE, Brooks S, Rich MA. The prognostic value of estrogen receptor determination in patients with primary breast cancer: an update. *Cancer* 1980, **46**, 2794-2796.
40. King RJB. Analysis of estradiol and progesterone receptors in early and advanced breast tumours. *Cancer* 1980, **48**, 2818-2821.
41. McCarty KS (Jr), Barton TK, Fetter BF, et al. Correlation of estrogen and progesterone receptors with histologic differentiation in mammary carcinoma. *Cancer* 1980, **46**, 2851-2858.
42. Silfverward C, Gustafsson J-A, Gustafsson SA, et al. Estrogen receptor concentration in 269 cases of histologically classified human breast cancer. *Cancer* 1980, **45**, 2001-2005.
43. Westerberg H, Gustafson SA, Nordenskjold B, et al. Estrogen receptor level and other factor in early recurrence of breast cancer. *Int J Cancer* 1980, **26**, 429-433.
44. Campbell FC, Blamey RW, Elston CW, et al. Oestrogen-receptor status and sites of metastasis in breast cancer. *Br J Cancer* 1981, **44**, 456-459.
45. Croton R, Cooke T, Holt S, et al. Oestrogen receptors and survival in early breast cancer. *Br Med J* 1981, **283**, 1289-1291.
46. Fisher B, Osborne CK, McGuire WL, et al. Correlation of primary breast cancer histopathology and estrogen receptor content. *Breast Cancer Res Treat* 1981, **1**, 37-41.
47. Kinne DW, Ashikari R, Butler A, et al. Estrogen receptor protein in breast cancer as a predictor of recurrence. *Cancer* 1981, **47**, 2364-2367.
48. Thoresen S, Tangen M, Stoa KF, Hartveit F. Oestrogen receptor values and histological grade in human breast cancer. *Histopathology* 1981, **5**, 257-261.
49. Crowe JP, Hubay CA, Pearson OH, et al. Estrogen receptor status as a prognostic indicator for stage I breast cancer patients. *Breast Cancer Res Treat* 1982, **2**, 171-176.
50. Skinner JR, Wanebo HJ, Betsill WL, et al. Evaluation of the pathologic and prognostic correlates of estrogen receptors in primary breast cancer. *Ann Surg* 1982, **196**, 630-641.
51. Stewart JF, King RJB, Winter PJ, et al. Oestrogen receptors, clinical features and prognosis in stage III breast cancer. *Eur J Cancer Clin Oncol* 1982, **18**, 1315-1320.
52. Ciatto S, Bravetti P, Cardona G, et al. Prognostic role of estrogen receptor determination in breast cancer. *Tumori* 1983, **69**, 527-530.
53. Clark GM, McGuire WL. Progesterone receptors and human breast cancer. *Breast Cancer Res Treat* 1983, **3**, 157-163.
54. Fisher B, Wickerham DL, Brown A, et al. Breast cancer estrogen and progesterone values: their distribution, degree of concordance, and relation to number of positive axillary nodes. *J Clin Oncol* 1983, **1**, 349-358.
55. Howat JMT, Barnes DM, Harris M, Swindell R. The association of cytosol oestrogen and progesterone receptors with histological features of breast cancer and early recurrence of disease. *Br J Cancer* 1983, **47**, 629-640.
56. Saez S, Cheix F, Asselain B. Prognostic value of estrogen and progesterone receptors in primary breast cancer. *Breast Cancer Res Treat* 1983, **3**, 345-354.
57. Stewart JF, Rubens RD, Millis RR, et al. Steroid receptors and prognosis in operable (stage I and II) breast cancer. *Eur J Cancer Clin Oncol* 1983, **19**, 1381-1387.
58. Aamdal S, Bormer O, Jorgensen O, et al. Estrogen receptors and long-term prognosis in breast cancer. *Cancer* 1984, **53**, 2525-2529.
59. Clark GM, Osborne CK, McGuire WL. Correlation between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. *J Clin Oncol* 1984, **2**, 1102-1109.
60. Wittliff JL. Steroid hormone receptors in breast cancer. *Cancer* 1984, **53**, 630-637.
61. Kohail HM, Elias GE, El-Nowiem SA, et al. A multi-factorial analysis of steroid hormone receptors in stages I and II breast cancer. *Ann Surg* 1985, **201**, 611-617.
62. Raemaekers JMM, Beex LVAM, Koenders AJM, et al. Disease-free interval and estrogen receptor activity in tumour tissue of patients with primary breast cancer: analysis after long-term follow-up. *Breast Cancer Res Treat* 1985, **6**, 123-130.
63. Schwartz MR, Randolph RL, Panko WB. Carcinoembryonic antigen and steroid receptors in the cytosol of carcinoma of the breast: Relationship to pathologic and clinical features. *Cancer* 1985, **55**, 2464-2471.
64. Williams MR, Nicholson RI, Elston CW, et al. Oestrogen receptor in primary breast cancer. *Br J Cancer* 1985, **51**, 907-909.
65. Alghanem AA, Hussain S. The effect of tumour size and axillary lymph node metastasis on estrogen and progesterone receptors in primary breast cancer. *J Surg Oncol* 1986, **31**, 218-221.
66. Barbi GP, Marroni P, Bruzzi P, et al. Correlation between steroid hormone receptors and prognostic factors in human breast cancer. *Oncology* 1987, **44**, 265-269.
67. Fisher ER, Sass R, Fisher B. Pathologic findings from the National Surgical Adjuvant Breast Project: Correlation with concordant and discordant estrogen and progesterone receptors. *Cancer* 1987, **59**, 1554-1559.
68. Thorpe SM, Rose C, Rasmussen BB, et al. Prognostic value of steroid hormone receptors: Multivariate analysis of systemically untreated patients with node negative primary breast cancer. *Cancer Res* 1987, **47**, 6126-6133.
69. Axelrod DM, Menendez-Botet CJ, Kinne DW, Osborne MP. Levels of estrogen and progesterone receptor proteins in patients

with breast cancer during various phases of the menses. *Cancer Invest* 1988, **6**, 7-14.

70. Fisher B, Redmond C, Fisher ER, et al. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients. Findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. *J Clin Oncol* 1988, **6**, 1076-1087.
71. Singh L, Wilson AJ, Baum M, et al. The relationship between histological grade, oestrogen receptor status, events and survival at 8 years in the NACTO (Nolvadex) trial. *Br J Cancer* 1988, **57**, 612-614.
72. Andry G, Suciu S, Pratola D, et al. Relation between estrogen receptor concentration and clinical and histological factors: Their relative prognostic importance after radical mastectomy for primary breast cancer. *Eur J Cancer Clin Oncol* 1989, **25**, 319-329.
73. Hahnel R, Vivian AB. Biochemical and clinical experience with the estimation of estrogen receptors in human breast carcinoma. In: McGuire WL, Carbone PP, Vollmer EP, eds. *Estrogen Receptors in Human Receptor in Human Breast Cancer*. New York, Raven Press, 1975, 205-235.
74. Heuson JC, Leclercq G, Longeval E, et al. Estrogen receptors: prognostic significance in breast cancer. In: McGuire WL, Carbone PP, Vollmer EP, eds. *Estrogen Receptors in Human Receptor in Human Breast Cancer*. New York, Raven Press, 1975, 57-72.
75. Millis RR. Correlation of hormone receptors with pathological features in human breast cancer. *Cancer* 1980, **46**, 2869-2871.
76. Osborne CK, Yochmowitz MG, Knight WA, McGuire WL. The value of estrogen and progesterone receptor in the treatment of breast cancer. *Cancer* 1980, **46**, 2884-2888.
77. Stewart JF, King RJB, Sexton S, et al. Oestrogen receptors, sites of metastatic disease and survival in recurrent breast cancer. *Eur J Cancer Clin Oncol* 1981, **17**, 449-453.
78. Alexieva-Figusch J, van Putten WLJ, Blankenstein MA, et al. The prognostic value and relationship of patient characteristics, estrogen and progestin receptors, and site of relapse in primary breast cancer. *Cancer* 1988, **61**, 758-768.
79. Silvestrini R, Sanfilippo O, Tendesco G. Kinetics of human mammary carcinomas and their correlation with the cancer and the host characteristics. *Cancer* 1974, **34**, 1252-1258.
80. Meyer JS and Bauer WC. Tritiated thymidine labelling index of benign and malignant human breast epithelium. *J Surg Oncol* 1976, **8**, 165-181.
81. Meyer JC, Bauer WC, Rao RD. Subpopulations of breast carcinoma defined by S-phase fraction, morphology, and estrogen receptor content. *Lab Invest* 1978, **39**, 225-235.
82. Meyer JS and Hixon B. Advanced stage and early relapse of breast carcinoma associated with high thymidine labelling indices. *Cancer Res* 1979, **39**, 4042-4047.
83. Silvestrini R, Diadone MG, Di Fronzo G. Relationship between proliferative activity and estrogen receptors in breast cancer. *Cancer* 1979, **44**, 665-670.
84. Straus MJ, Moran RE. The cell cycle kinetics of human breast cancer. *Cancer* 1980, **46**, 2634-2639.
85. Bertuzzi A, Diadone MG, Di Fronzo G, Silvestrini R. Relationship among estrogen receptors, proliferative activity and menopausal status in breast cancer. *Breast Cancer Res Treat* 1981, **1**, 253-262.
86. Gentili C, Sanfilippo O, Silvestrini R. Cell proliferation and its relationship to clinical features and relapse in breast cancer. *Cancer* 1981, **48**, 974-979.
87. Tubiana M, Pejovic JM, Renaud A, et al. Kinetic parameters and the course of the disease in breast cancer. *Cancer* 1981, **47**, 937-943.
88. Straus MJ, Moran R, Muller RE, Wotiz HH. Estrogen receptor heterogeneity and the relationship between estrogen receptor and the tritiated thymidine labeling index in human breast cancer. *Oncology* 1982, **39**, 197-200.
89. Meyer JS, Friedman E, McCrate M, Bauer WC. Prediction of early course of breast carcinoma by thymidine labeling. *Cancer* 1983, **51**, 1879-1886.
90. McDivitt RW, Stone KR, Craig RB, Meyer JS. A comparison of breast cancer cell kinetics measured by flow cytometry and thymidine labelling. *Lab Invest* 1985, **52**, 287-291.
91. McDivitt RW, Stone KR, Craig RB, et al. A proposed classification of breast cancer based on kinetic information. Derived from a comparison of risk factors in 168 primary operable breast cancers. *Cancer* 1986, **57**, 269-376.
92. Silvestrini R, Daidone MG, Fronzo G, Di, et al. Prognostic implication of labelling index versus estrogen receptors and tumour size in node-negative breast cancer. *Breast Cancer Res Treat* 1986, **7**, 161-169.
93. Courdi A, Hery M, Dahan E, et al. Factors affecting relapse in node-negative breast cancer. A multivariate analysis including the labeling index. *Eur J Cancer Clin Oncol* 1989, **25**, 351-356.
94. Auer G, Casperson DO, Gustafsson SA, et al. Relationship between nuclear DNA distribution and oestrogen receptors in human mammary carcinomas. *Anal Quant Cytol* 1980, **2**, 280-284.
95. Bedrossian CMW, Raber M, Barlogie B, et al. Flow cytometry and cytromorphology in primary resectable breast cancer. *Anal Quant Cytol* 1981, **3**, 112-116.
96. Kute TE, Muss HB, Anderson D, et al. Relationship of steroid receptor, cell kinetics and clinical status in patients with breast cancer. *Cancer Res* 1981, **41**, 3524-3529.
97. Olszewski W, Darzynkiewicz Z, Rosen PP, et al. Flowcytometry of breast carcinoma: I. Relation of DNA ploidy level to histology and estrogen receptor. *Cancer* 1981, **48**, 980-984.
98. Olszewski W, Darzynkiewicz Z, Rosen PP, et al. Flow cytometry of breast carcinoma: II. Relation of tumor cell cycle distribution to histology and estrogen receptor. *Cancer* 1981, **48**, 985-988.
99. Bichel P, Poulsen HS, Andersen J. Estrogen receptor content and ploidy of human mammary carcinoma. *Cancer* 1982, **50**, 1771-1774.
100. Raber MN, Barlogie B, Latrelle J, et al. Ploidy, proliferative activity and estrogen receptor content in human breast cancer. *Cytometry* 1982, **3**, 36-41.
101. Taylor LW, Musgrave EA, Friedlander ML, et al. The influence of age on the ploidy levels of breast tumours. *Eur J Cancer Clin Oncol* 1983, **19**, 623-628.
102. Auer G, Eriksson E, Azavedo E, et al. Prognostic significance of nuclear DNA content in mammary adenocarcinomas in humans. *Cancer Res* 1984, **44**, 394-396.
103. Coulson PB, Thorntwaite JT, Woolley TW, et al. Prognostic indicators including DNA histogram type, receptor content, and staging related to human breast cancer patient survival. *Cancer Research* 1984, **44**, 4187-4196.
104. Ewers SB, Langstrom E, Balderup BO, Killander D. Flowcytometric DNA analysis in primary breast carcinomas and clinicopathological correlations. *Cytometry* 1984, **5**, 408-419.
105. Fossa SD, Thorud E, Shoaib MC, et al. DNA flow cytometry in primary breast carcinoma. *Acta Pathol Microbiol Immunol Scand* 1984, Sect A, **92**, 475-480.
106. Hedley DW, Rugg CA, Ng ABP and Taylor IW. Influence of cellular DNA content on disease-free survival of stage II breast cancer patients. *Cancer Res* 1984, **44**, 5395-5398.
107. Jakobsen A, Skovgaard Poulsen H, Lindegaard Madsen E, et al. Ploidy level of human breast carcinoma. *Acta Radiol Oncol* 1984, **23**, 103-107.
108. Moran RE, Black MM, Alpert L, Straus MJ. Correlation of cell-cycle kinetics, hormone receptors, histopathology and nodal status in human breast cancer. *Cancer* 1984, **54**, 1586-1590.
109. Klintenberg C, Wallgren A, Bjelkenkrantz, et al. DNA distribution, cytosol estrogen receptors and axillary nodes as prognostic predictors in breast carcinoma. *Acta Radiol Oncol* 1985, **24**, 253-258.
110. Kute TE, Muss HB, Hopkins M, et al. Relationship of flow cytometry results to clinical and steroid receptor status in human breast cancer. *Breast Cancer Res and Treat* 1985, **6**, 113-121.
111. Horsfall DJ, Tilley WD, Orell SR, et al. Relationship between ploidy and steroid hormone receptors in primary invasive breast cancer. *Br J Cancer* 1986, **53**, 23-28.
112. Thorud E, Fossa SD, Vaage S, et al. Primary breast cancer: Flow cytometric DNA pattern in relation to clinical and histopathologic characteristics. *Cancer* 1986, **57**, 808-811.
113. Cornelisse CJ, van de Velde CJH, Caspers RJC, et al. DNA ploidy and survival in breast cancer patients. *Cytometry* 1987, **8**, 225-234.
114. Harvey J, Klerk Nicholas de, Berryman I, et al. Nuclear DNA content and prognosis in human breast cancer: a static cytophotometric study. *Breast Cancer Res and Treat* 1987, **9**, 101-109.
115. Hedley DW, Rugg CA, Gelber RD. Association of DNA index and S-Phase fraction with prognosis of nodes positive early breast cancer. *Cancer Res* 1987, **47**, 4729-4735.
116. Kallioniemi O-P, Blanco G, Alavaikko M, et al. Tumour DNA ploidy as an independent prognostic factor in breast cancer. *Br J Cancer* 1987, **56**, 637-642.
117. Owainati AA, Robins RA, Hinton C, et al. Tumour aneuploidy,

prognostic parameters and survival in primary breast cancer. *Br J Cancer* 1987, **55**, 449-454.

118. Dressler LG, Seamer LC, Owens MA, et al. DNA flow cytometry and prognostic factors in 1331 frozen breast cancer specimens. *Cancer* 1988, **61**, 420-427.
119. Fallenius AG, Franzen SA, Auer GU. Predictive value of nuclear DNA content in breast cancer in relation to clinical and morphologic factors. *Cancer* 1988, **62**, 521-530.
120. Feichter GE, Mueller A, Kaufmann M, et al. Correlation of DNA flow cytometric results and other prognostic factors in primary breast cancer. *Int J Cancer* 1988, **41**, 823-828.
121. Kallioniemi O-P, Blanco G, Alavaikko M. Improving the prognostic value of DNA flow-cytometry in breast cancer by combining DNA index and S-phase fraction. A proposed classification of DNA histograms in breast cancer. *Cancer* 1988, **62**, 2183-2190.
122. Lykkesfeldt AE, Balslev I, Christensen IJ. DNA ploidy and S-phase fraction in primary breast carcinomas in relation to prognostic factors and survival for premenopausal patients at high-risk for recurrent disease. *Acta Oncologica* 1988, **27**, 749-756.
123. Stal O, Wingren S, Carstensen J, et al. Prognostic value of DNA ploidy and S-Phase fraction in relation to estrogen receptor content and clinicopathological variables in primary breast cancer. *Eur J Cancer Clin Oncol* 1989, **25**, 301-309.
124. Fitzpatrick SL, Brightwell J, Wittliff JL, et al. Epidermal growth factor binding by breast tumour. Biopsies and relationship to estrogen receptor and progestin receptor levels. *Cancer Res* 1984, **44**, 3448-353.
125. Perez R, Pascual M, Macias A, Loge A. Epidermal growth factor receptors in human breast cancer. *Breast Cancer Res Treat* 1984, **4**, 189-193.
126. Peyrat JP, Bonneterre J, Vandewalle B, et al. Recepteurs de l-EGF dans les cancers du sein humain. Relations avec les recepteurs hormonaux. *Ann Endocrinol* 1984, **45**, 412-413.
127. Sainsbury JRC, Farndon JR, Sherbet GV, Harris AL. Epidermal growth factor receptors and oestrogen receptors in human breast cancer. *Lancet* 1985, **i**, 364-366.
128. Grimaux M, Remvikos Y, Maddelein H. Recepteurs d'EGF et recepteurs hormonaux dans les tumeurs mammaires. *7eme Forum de Cancerologie*, Paris, 1987.
129. Sainsbury JRC, Farndon JR, Needham GK, et al. Epidermal-Growth-Factor receptor status as predictor of early recurrence of and death from breast cancer. *Lancet* 1987, **i**, 1398-1402.
130. Battaglia F, Polizzi G, Scambia G, et al. Receptors for epidermal growth factor and steroid hormones in human breast cancer. *Oncology* 1988, **45**, 424-427.
131. Battaglia F, Scambia G, Rossi S, et al. Epidermal growth factor receptor in human breast cancer: Correlation with steroid hormone receptors and axillary node involvement. *Eur J Cancer Clin Oncol* 1988, **24**, 1685-1690.
132. Delarue JC, Friedman S, Mourisse H, et al: Epidermal growth factor receptor in human breast cancers: Correlation with oestrogen and progesterone receptors. *Breast Cancer Res Treat* 1988, **11**, 173-178.
133. Spitzer E, Koepke K, Kunde D and Grosse R. EGF binding is quantitatively related to growth in node-positive breast cancer. *Breast Cancer Res Treat* 1988, **12**, 45-49.
134. Rio MC, Bellocq JP, Gairard B, et al. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene erbB-2. *Proc Natl Acad Sci USA* 1987, **84**, 9243-9247.
135. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. *Science* 1987, **235**, 177-182.
136. van de Vijver M, van de Bersselaar R, Devilee P, et al. Amplification of the neu (c-erb-B-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. *Mol Cell Biol* 1987, **7**, 2019-2023.
137. Varley JM, Swallow JE, Brammar WJ, et al. Alterations to either c-erbB-2(neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. *Oncogene* 1987, **1**, 423-430.
138. Zhou D, Battifora H, Yokota J, et al. Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. *Cancer Res* 1997, **47**, 6123-6125.
139. Venter DJ, Kumar S, Tuzi NL, Gullick WJ. Overexpression of the c-erbB-2 oncogene in human breast carcinomas: Immunohistochemical assessment correlates with gene amplification. *Lancet* 1987, **ii**, 69-72.
140. Ali IU, Campbell G, Lidereau R, Callahan R. Amplification of c-erbB-2 and aggressive human breast tumours? *Science* 1988, **240**, 1795-1796.
141. Barnes DM, Lammie GA, Millis RR, et al. An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. *Br J Cancer* 1988, **58**, 448-452.
142. Gusterson BA, Machin LG, Gullick WJ, et al. c-erbB-2 expression in benign and malignant breast disease. *Br J Cancer* 1988, **58**, 453-457.
143. Berger MS, Locher GW, Saurer S, et al. Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. *Cancer Res* 1988, **48**, 1238-1243.
144. Dati C, Muraca R, Tazartes O, et al. Amplification and expression of neu/erbB-2 oncogene in human primary breast cancer. *Breast Cancer Res Treat* 1988, **12**, 110.
145. van de Vijver MJ, Peterse JL, Mooi WJ, et al. Neu-protein overexpression in breast cancer: Association with Comedo-type ductal carcinoma *in situ* and limited prognostic value in stage II breast cancer. *New Eng J Med* 1988, **319**, 1239-1245.
146. Tsuda H, Hirohashi S, Shimosato Y, et al. Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: *hst-1/int-2* and c-erbB-2/ear-1. *Cancer Res* 1989, **49**, 3104-3108.
147. Wright C, Angus B, Nicholson S, et al. Expression of c-erbB-2 on oncogene: A prognostic infisvot in human breast cancer. *Cancer Res* 1989, **49**, 2087-2090.
148. Lovekin C, Ellis IO, Locker A, et al. c-erbB-2 oncogene expression in breast cancer: Relationships and prognostic significance. *J Pathol* 1989, **158**, 345.
149. Walker RA, Gullick WJ, Varley JM. An evaluation of immunoreactivity for c-erbB-2 as a marker of poor short-term prognosis in breast cancer. *Br J Cancer* 1989, **60**, 426-429.
150. Garcia I, Dietrich PY, Aapro M, et al. Genetic alterations of c-myc, c-erbB-2, and c-Ha-ras protooncogenes and clinical associations in human breast carcinomas. *Cancer Res* 1989, **49**, 6675-6679.
151. Ro J, Naggar AE, Ro JY, et al. c-erbB-2 amplification in node-negative human breast cancer. *Cancer Res* 1989, **49**, 6941-6944.
152. Wright C, Angus B, Nicholson S, et al: Expression of c-erbB-2 oncprotein: A prognostic indicator in human breast cancer. *Cancer Res* 1989, **49**, 2087-2090.
153. Fisher B, Slack NH, Katrych D, et al. Ten-year followup results of patients with carcinoma of the breast in a cooperative clinical trial evaluating surgical adjuvant chemotherapy. *Surg Gynecol Obstet* 1975, **140**, 528-534.
154. Nemoto T, Vana J, Bedwani RN, et al. Management and survival of female breast cancer: Results of a national survey by the American College of Surgeons. *Cancer* 1980, **45**, 2917-2924.
155. Tubiana M, Pejovic MJ, Renaud A, et al. Kinetic parameters and the course of the disease in breast cancer. *Cancer* 1981, **47**, 937-943.
156. Pater JL, Mores D, Loeb M. Survival after recurrence of breast cancer. *Canadian Med Ass J* 1981, **124**, 1591-1595.
157. Stewart JF, King RJ, Sexton SA, et al. Oestrogen receptors, sites of metastatic disease and survival in recurrent breast cancer. *Eur J Cancer Clin Oncol* 1981, **17**, 449-453.
158. Howat JMT, Harris M, Swindell R, Barnes DM. The effect of oestrogen and progesterone receptors on recurrence and survival in patients with carcinoma of the breast. *Br J Cancer* 1985, **51**, 263-270.
159. Tubiana M, Pejovic MH, Chavaudra N, et al. The long-term prognostic significance of the thymidine labelling index in breast cancer. *Int J Cancer* 1984, **33**, 441-445.
160. Hahnel R, Woodings T, Vivian AB. Prognostic value of estrogen receptors in primary breast cancer. *Cancer* 1979, **44**, 671-675.
161. Kinne DW, Ashikari R, Butler A, et al. Estrogen receptor protein in breast cancer as a predictor of recurrence. *Cancer* 1981, **47**, 2364-2367.
162. Howell A, Harland RNL, Bramwell VHC, et al. Steroid-hormone receptors and survival after first relapse in breast cancer. *Lancet* 1984, **i**, 588-591.
163. Bonneterre J, Horner D, Peyrat JP, et al. Estradiol and progesterone receptors in breast cancer: Prognostic value after relapse. *Breast Cancer Res and Treat* 1985, **5**, 149-154.
164. Williams MR, Todd JH, Nicholson RI, et al. Survival patterns in

hormone treated advanced breast cancer. *Br J Surg* 1986, **73**, 752-755.

165. Tubiana M, Koscielny S. The natural history of human breast cancer: implications for patient management. In: Paterson AHG, Lees AW, eds. *Fundamental Problems in Breast Cancer*. Boston, Martinus Nijhoff Publishing, 1987, 333-348.

166. Stoll BA. Components of a prognostic index. In: Stoll BA ed. *Breast Cancer: Treatment and Prognosis*. Oxford, Blackwell Scientific Publications, 1986, 115-131.

Acknowledgement—We thank Ms. Usha Bhadsavle for her help in preparing this manuscript.

Recombinant Interleukin-2 in Metastatic Renal Cell Carcinoma—A European Multicentre Phase II Study

H. von der Maase, P. Geertsen, N. Thatcher, C. Jasmin, A. Mercatello, S.D. Fosså, M. Symann, G. Stoter, G. Nagel, L. Israel, R. Oskam, P. Palmer and C.R. Franks

This multinational, multicentre study represents the introduction of recombinant interleukin-2 (rIL-2) in Europe. From December 1987 to June 1989, 57 eligible patients with metastatic renal cell cancer were treated with rIL-2 administered as continuous intravenous infusion. 8 out of 51 evaluable patients responded (16%), 2 complete remission (CR) and 6 partial remission (PR). 10 patients had no change (20%). The response duration for CR was 209 and 394+ days. The median response duration for PR was 371 (range 140-506+) days. Dose-limiting grade 3-4 toxicities were hypotension in 52% of the patients, arrhythmia (4%), dyspnoea (8%), creatinine rise (4%), peripheral neurotoxicity (10%) and central neurotoxicity (10%). Toxicities most often recovered solely on interrupted therapy. 2 patients died due to catheter-related septicaemia and one patient died of rIL-2 induced renal failure. The study confirmed the antitumour efficacy of rIL-2 in renal cell cancer. Toxicities were numerous, but manageable by close observation in a normal oncology ward without routine use of an intensive care unit.

Eur J Cancer, Vol. 27, No. 12, pp. 1583-1589, 1991.

INTRODUCTION

RECOMBINANT INTERLEUKIN-2 (rIL-2) alone or in combination with lymphokine-activated killer (LAK) cells has shown antitumour efficacy in several animal tumour models [1-3]. Since the initial reports from Rosenberg *et al.* [4], a number of clinical trials have confirmed that rIL-2-based immunotherapy can result in durable responses in tumours refractory to conventional therapeutic approaches [5-10]. The contribution of LAK cells to the therapeutic efficacy has still not been clarified. There seems to be no increase in the total number of responding patients although it has been claimed that there may be more complete responses when rIL-2 is combined with LAK cells [11].

Correspondence to H. von der Maase.

H. von der Maase and P. Geertsen are at the Department of Oncology, Herlev University Hospital, Copenhagen, Denmark; N. Thatcher is at the Christie Hospital, Manchester, U.K.; C. Jasmin is at Hopital Paul Brousse, Villejuif; A. Mercatello is at Hopital Edouard Herriot and Centre Léon Bérard, Lyon, France; S.D. Fosså is at the Norwegian Radium Hospital, Oslo, Norway; M. Symann is at the UCL University Hospital St Luc, Brussels, Belgium; G. Stoter is at the Rotterdam Cancer Institute, Rotterdam, The Netherlands; G. Nagel is at the Med. Universitätsklinik, Göttingen, Germany; L. Israel is at the Hopital Avicenne, Bobigny, France; and R. Oskam, P. Palmer and C.R. Franks are at Eurocetus, Amsterdam, The Netherlands.
Revised 6 Aug. 1991; accepted 19 Sep. 1991.

West *et al.* have developed a schedule for continuous rIL-2 infusion obviating the use of an intensive care unit while maintaining antitumour efficacy [10]. Based on this regimen, a European multinational, multicentre, non-randomised phase II trial using rIL-2 alone in metastatic renal cell carcinoma was initiated. The present paper deals with the results from this study representing the introduction of rIL-2 based immunotherapy in Europe. A preliminary report has been presented [8].

PATIENTS AND METHODS

Patients

From December 1987 to June 1989, 61 patients with histologically proven metastatic renal cell carcinoma entered the protocol. The distribution of patients according to the participating institutions is given in Table 1. The protocol entry criteria are summarised in Table 2. All patients had progressive disease, defined as at least 25% increase of the area of any tumour lesion before entering the study. The response status of all patients was reviewed in a blinded fashion by a central review committee consisting of 3 physicians and 2 radiologists. 4 patients were judged to be ineligible and were excluded from all further analysis. The reasons for excluding these 4 patients were as follows: performance status < 80 in 2 cases, lung infection and severe tachycardia in 1 case, and prior chemotherapy in 1 case.